The Infinitude of Pythagorean Triples
1:33 AM
Muhammad Yusuf
, Posted in
Geometry
,
0 Comments
For the 100th time (kidding), recall that the Pythagorean Theorem states that in a right triangle with side lengths and , where is the hypotenuse, the equation is satisfied. For example, if we have a triangle with side lengths and units, then the hypotenuse is . The converse of the Pythagorean theorem is also true: If you have side lengths, and , which satisfies the equation above, we are sure that the angle opposite to the longest side is a right angle.
We are familiar with right triangles with integral sides. The triangle with sides units, for instance, is a right triangle. This is also the same with and . We will call this triples, the Pythagorean triples ,or geometrically, right triangles having integral side lengths.
The first thing that we can observe about the Pythagorean triples is that there are infinitely many of them. The triple , for example, can be multiplied by any positive integer to produce another Pythagorean triple. For example is also a Pythagorean triple. The proof is intuitively discussed below.
Theorem: There are infinitely many Pythagorean Triples.
Proof: We have discussed that two triangles that are similar are of the same shape, but not necessarily of the same size. We also know that similar triangles have congruent corresponding angles. Therefore, if a triangle with integral side lengths is right, multiplying the side lengths with any positive integer changes only the size and not the shape. Therefore, our new triangle with side lengths is also right.
Since there are infinitely many positive integers which we can substitute to , we can therefore conclude that there are infinitely many Pythagorean Triples.
0 Response to "The Infinitude of Pythagorean Triples"
Post a Comment